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Abstract Boundary-layer flow around a spinning liquid sphere moving steadily in a gas stream
is investigated numerically. The shear stress exerted on the sphere’s surface results in surface
rotation in the meridional direction in addition to the azimuthal velocity resulting from the
spinning of the liquid sphere. The parameters controlling the flow around the sphere are the
external flow Reynolds number (Re), the liquid-to-gas viscosity ratio (m*) and the spinning
parameter (Rer/Re)2. The effect of these parameters on the velocity components (namely the
meridional, radial and azimuthal velocity components) and on the shear stress is shown. Moreover,
their effect on the location of external flow point of separation is also demonstrated.
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Nomenclature
a ¼ Sphere radius
r ¼ Radius of a circular cross-section of the

spherical droplet by a plane
perpendicular to the main gas stream
direction

R ¼ Dimensionless value of r, 2r/(a Re)
Re ¼ Reynolds number, 2U1a/n
Rer ¼ Rotational Reynolds number, 2Va 2/n
tx ¼ Shear stress in the meridional direction

on the spherical droplet’s surface,
m(›u/›z )0

ty ¼ Shear stress in the azimuthal direction
on the spherical droplet’s surface,
m(›v/›z )0

Tx ¼ Dimensionless shear stress in the
meridional direction,
txð

ffiffiffiffiffiffiffiffiffiffi
Re=2

p
Þ=ðrU 2

1Þ
Ty ¼ Dimensionless shear stress in the

azimuthal direction,
tyð

ffiffiffiffiffiffiffiffiffiffi
Re=2

p
Þ=ðrU 2

1Þ

u ¼ Meridional (x-direction) component of
velocity

U ¼ Dimensionless meridional component
of velocity, u/U1

u* ¼ Velocity component in the x-direction
for the potential flow outside the
external boundary layer,
2ð›c=›rÞ=ðr sin uÞ ¼
U1 sin u ½1 þ a 3=ð2r 3Þ�

U* ¼ Dimensionless potential velocity
component in the x-direction for
external flow, u*/U1

U1 ¼ Free stream velocity in the exterior
flow

v ¼ Azimuthal velocity component
v0 ¼ Circumferential velocity at a point on

the spherical droplet surface, Vr
V ¼ Dimensionless azimuthal velocity

component at any point, v/Va
V0 ¼ Dimensionless azimuthal velocity
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Introduction
This work deals with the problem of flow around a spinning liquid sphere
subjected to a uniform stream in the direction of its axis of spin. The sphere
also experiences a shear stress on its outer surface that results in the rotation of
this surface in the meridional direction leading to three-dimensional governing
equations that are solved numerically. Practical applications of this analysis
can be found in the case of a fuel droplet injected with swirl into a combustion
chamber and in the case of a water droplet in spray-irrigation or fire fighting
with swirl (if any).

Schlichting (1953) used a momentum integral technique and Hoskins (1954)
reported that the separation point of the laminar boundary layer is advanced at
the rear hemisphere due to the solid sphere rotation. The three-dimensional
flow around a spinning body of revolution was analyzed by Parr (1964) using
the boundary-layer theory. El-Shaarawi et al. (1985) investigated the boundary-
layer flow about a spinning solid sphere for high values of Reynolds number
and spin parameter. They also reported that increasing the spin parameter
(Rer/Re)2 shifts the point of laminar flow separation forward. Rao and Sekhar
(1993) analyzed numerically the axisymmetric rotating flow around a spinning
solid sphere at small Reynolds numbers such that the diameter about which the
sphere spins lies along the axis of the rotating fluid. They solved the complete
Navier-Stokes equations in the stream function-vorticity format. Schmitt (1997)
analyzed the viscous flow around a sphere spinning at a constant angular
velocity for large Reynolds numbers.

component at a point on the droplet
surface, r/a

w ¼ Radial (z-direction) velocity component
w* ¼ Radial (z-direction) velocity component

for potential flow outside the external
boundary layer, ð›c=›uÞ=ðr 2 sin uÞ ¼
2U1 cos u ½1 2 a 3=r 3�

W ¼ Dimensionless radial velocity
component, w/U1

W* ¼ Dimensionless radial velocity
component for the external potential
flow, w*/U1

x ¼ Meridional distance (along the circular
generator of the droplet’s spherical
surface) measured from the stagnation
point

X ¼ Dimensionless meridional distance
along the surface measured from the
stagnation point, 2x/Re a

z ¼ Distance from the droplet’s spherical
surface measured along the normal to

the surface in the radial direction,
being positive for the external flow and
negative inside the sphere

Z ¼ Dimensionless distance perpendicular
to the surface in the radial direction, z/a

Greek symbols
u ¼ Center angle measured from the frontal

stagnation line
m ¼ Dynamic fluid viscosity
m* ¼ Interior-to-exterior (liquid-to-gas)

dynamic viscosity ratio, ml/mg

n ¼ Kinematic viscosity of the fluid
V ¼ Angular velocity of the sphere
c ¼ Stream function of external potential

flow far away from the droplet, given
by c ¼ 0:5 u1 r 2 sin2 uð1 2 a 3=r 3Þ

Subscripts
g ¼ Gas phase
l ¼ Inside the liquid sphere (droplet)
o ¼ On the sphere surface
s ¼ At separation point for fluid flow
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The unsteady boundary-layer flow past an impulsively started translating
and spinning rotational symmetric body was studied by Ece (1992), where the
stream function and the velocity swirl component were expanded in series in
powers of time. He reported that the sphere rotation reduces the drag and the
separation angle. Ferriera et al. (1998) studied analytically the transient motion
of a dense rigid sphere falling in light liquid. They obtained closed form
solutions of instantaneous position, velocity and acceleration of the sphere.
Kalro and Tezduvar (1998) used finite-element method to also investigate the
three-dimensional unsteady flow past a sphere.

Raghavarao and Pramadavalli (1989a, b) studied the flow of steady
incompressible fluid rotating with a constant angular velocity and moving past
a sphere for small values of Reynolds number where the Navier-Stokes
equations were linearized using the Oseen approximation. They concluded that
the rotation decreased the values of the stream function. Then, they solved the
non-linear Navier-Stokes equations numerically in the stream function-
vorticity form and compared the results of the two models. The unsteady flow
past a sphere was investigated numerically for oscillatory and accelerated
motion, respectively, by Chang and Maxey (1994, 1995) at low to moderate
Reynolds numbers.

El-Shaarawi et al. (1997) considered the flow about and inside a non-spinning
liquid sphere moving steadily in another immiscible fluid, boundary-layer
equations were used to investigate the flow field for large Reynolds number
and for a wide range of interior-to-exterior viscosity ratio. The shear stress
on the fluid-sphere-surface induces internal motion inside the sphere that can
be represented by the well-known Hill’s vortex. However, the strength of the
vortex is reduced because of the boundary layer in the liquid phase.

To the best of the authors’ knowledge, no previous work investigated the
three-dimensional flow field around a spinning liquid sphere at moderate to
high Reynolds numbers. This work aims at covering the still-existing gap in
the literature by analyzing the hydrodynamics of a spinning liquid sphere in a
gas stream. The effect of the flow parameters on the velocity profiles, the shear
stress and the angle of flow separation will be presented.

Governing equations and boundary conditions
Figure 1a depicts the problem under consideration and the coordinate system.
The flow field is assumed to be axisymmetric ð›=›q ¼ 0Þ and both the fluids
have constant properties. Reynolds number is assumed large enough for the
boundary-layer model to be applied ðRe @ 1Þ: Weber number is assumed small
enough so that the drop remains spherical in shape ðWe ! 1Þ: The effects of
gravity, chemical reaction, compressibility, phase change and surface active
impurities are absent. Under these assumptions, the non-dimensional
continuity and momentum equations are:
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Mass conservation

›U

›X
þ

Re

2

›W

›Z
þ

U

R

dR

dX
þ Re

W

1 þ Z
¼ 0 ð1Þ

Momentum conservation in meridional direction

U
›U

›X
þ

ReW

2

›U

›Z
2

Rer

Re

� �2
V 2

R

dR

dX
¼ U*

›U*

›X
þ

›2U

›Z 2
ð2Þ

Momentum equation in azimuthal direction

U
›V

›X
þ

UV

R

›R

›X
þ

Re

2
W

dV

dZ
¼

›2V

›Z 2
ð3Þ

The above equations are subject to the following boundary conditions

for Z ¼ 0; X ¼ 0; U ¼ V ¼ W ¼ 0

for Z ¼ 1; X $ 0 ðfar away from the dropletÞ; U ¼ U* ; V ¼ 0

for Z . 0 and X ¼ 0; and W ¼ W* ; U ¼ V ¼ 0

for Z ¼ 0; X . 0 ðdroplet surfaceÞ; U ¼ U l;

›U

›Z
¼ 2m*

›U l

›Z l
ðshear stress equalityÞ;

W ¼ 0 and V ¼ ðRe=2Þ R

ð4Þ

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

Numerical method of solution
The numerical grid is shown in Figure 1b. A typical mesh point ði; jÞ designates
the progress in the radial direction (i ) and meridional direction ( j ), where i ¼ 1
represents the surface of the sphere and increases radially till the edge of the
boundary layer, while j ¼ 1 represents the front stagnation line and increases
till the point of external flow separation is encountered and the solution is
stopped. The governing equations (1-3) along with the boundary conditions (4)
can be written in finite-difference forms as follows:

Uiþ1; jþ1 þ Ui; jþ1 2 Uiþ1; j 2 Ui; j

2DXiþ1=2
þ

Re

2

Wiþ1; jþ1 2 Wi; jþ1

DZ

þ
ReðWiþ1; jþ1 þ Wi; jþ1Þ

2ð1 þ Ziþ1=2Þ
þ
ðUiþ1; jþ1 þ Ui; jþ1ÞRe cotð jDuÞ

4ð1 þ Ziþ1=2Þ
¼ 0

ð5Þ
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Figure 1.
(a) Coordinate system,
(b) numerical grid
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Ui; j
U i; jþ1 2 Ui; j

DXi

þ
Re

2
Wi; j

U iþ1; jþ1 2 Ui21; jþ1

2DZ

2
Rer

Re

� �2 Vi; jV i; jþ1

2½1 þ ði 2 1ÞDZ �
cotð jDuÞ

¼
9

8
sinð j:DuÞ:Re cosð j:DuÞ þ

Uiþ1; jþ1 2 2Ui; jþ1 þ Ui21; jþ1

DZ 2
ð6Þ

Ui; j
V i; jþ1 2 Vi; j

DXi

þ
Re

4
Ui; j

V i; jþ1 2 V i; j

1 þ ði 2 1ÞDZ
cot j 2

1

2

� �
Du

þ Wi; j
V iþ1; jþ1 þ Viþ1; j 2 V i21; j 2 V i21; jþ1

4DZ

Re

2

¼
Viþ1; jþ1 þ V iþ1; j 2 2V i; jþ1 2 2V i; j þ V i21; jþ1 þ V i21; j

2ðDZ 2Þ
ð7Þ

and the boundary conditions are

for j ¼ 1 and i $ 1 : Ui;1 ¼ V i;1 ¼ 0; Wi;1 ¼ 21 þ
1

½1 þ ði 2 1ÞDZ �3

for i ¼ n þ 1 and j . 1 : Unþ1; j ¼ 1 þ
1

2ð1 þ nDZ Þ3

	 


sin ½ð j 2 1ÞDu�V nþ1; j ¼ 0

for i ¼ 1 and j . 1 : U 1; j ¼ Uil; j; W 1; j ¼ W l1; j ¼ 0;

U 2; j 2 U 1; j

DZ
¼

m*

DZ l
ðU l2; j 2 U l1; jÞ

ð8Þ

It is noted that in the given finite-difference equations, the variables with
subscript j þ 1 indicate unknown values, while the variables with subscript j
are known values. Moreover, the equations are linearized by assuming that
where the product of two unknowns occurs, one of them is given by its value
from the previous meridional step. On specifying the values of Re, m* and
(Rer/Re)2, equation (7) is solved for the second meridional step ð j ¼ 2;
i ¼ 1; 2; . . .; n 2 1Þ using Thomas method for the obtained ðn 2 1Þ
simultaneous equations. Having calculated the values of V at the second
meridional step, these values are used to solve equation (6) for the meridional
velocity values (U ) using the same method to similarly solve the obtained (n )
equations. It is worth mentioning that the surface velocity U 0;2 is greater than
zero because of the shear stress effect on the sphere’s surface that results in the

Liquid sphere in
a gas stream

805



surface rotation. The condition on the surface is unknown and can be obtained
from the solution of the pertinent matrix after using the following equation to
determine Ul2, j without the need to solve furthermore inside the sphere.

U l2; j ¼
U 2; j

m*
2 U 1; j

1

m*
2 1

� �

This equation is obtained by applying the continuity of the shear stress in both
the gas and liquid phases and considering DZ ¼ DZ l: Using the computed
values of V and U in the second meridional step, equation (5) can be solved for
W in a step-by-step manner. Then the solution is advanced to the next
meridional step and the whole procedure is repeated till the point of external
flow separation, which is characterized by the condition ›U=›Z ¼ 0; is
reached.

The selection of n is done as follows. An initial value of 20 is assumed and
then on solving for the meridional velocity component, the value at the
uppermost point is compared with the potential flow velocity component at the
same meridional station. If they are close in tangent, the solution is advanced to
the next meridional station, otherwise the value of n is increased by 2 and the
solution is repeated for the same meridional station and the computed values of
U are accepted, if the same criteria is satisfied. When the point of separation is
reached, the solution is stepped back to the previous meridional station and the
increment Du is changed from 1 to 0.18 in order to accurately estimate the
separation point. The code has the advantage of being fast and requires low
computer storage capacity.

The truncation error due to the finite-difference approximation of equations
(1-3) is proportional to DX and DZ 2 and it vanishes as the mesh size tends to
zero confirming the consistency of the finite-difference equations (5-7) with
their original partial differential equations (1-3). In addition, the finite-
difference equations are found to be stable for all mesh sizes as long as the
down-stream meridional velocity is positive (i.e. before the point of external
flow separation).

Results and discussion
Three parameters control the flow around the liquid sphere. These parameters
are: Reynolds number Re, the dynamic viscosity ratio m*, and the spinning
parameter (Rer/Re)2. It is worth mentioning that inspite of the fact that the
computer code can cope with large values of the controlling parameters, the
value of Reynolds number is limited to 125 to keep the Weber number small
enough to avoid droplet deformation.

For example, a simple calculation for a liquid hydrocarbon droplet moving
in air of a temperature of about 5008C at U1 about 1 m/s gives mgas U1=s ,
O (1023). Since We ¼ mgas U1Re=s; then the previous example gives
We , Oð1021Þ which is !1. In this study, the spin parameter (Rer/Re)2, which
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represents the ratio between centrifugal force and inertial force, ranges from 0
to 500 and the viscosity ratio ranges from 1.01 to 5. Results are obtained to
show the effect of these parameters on the three velocity components within the
boundary layer, the shear stress and the point of external flow separation.

Figure 2a shows the meridional velocity profile at different meridional
stations for a Reynolds number of 100, a liquid-to-gas viscosity ratio (m*) of 1.5,
and ðRer=ReÞ2 ¼ 0: It is clear from this figure that the hydrodynamic boundary
layer thickness increases as the meridional angle u increases. Figure 2b shows
the effect of the spin on the meridional velocity distribution. The spin
ððRer=ReÞ2 . 0Þ results in fluid acceleration within the boundary layer due to
the centrifugal force acting on the fluid layers close to the spherical droplet
surface. This effect is absent in the non-spinning sphere, i.e. for ðRer=ReÞ2 ¼ 0
(Figure 2a). Moreover, it is not clear for low values of (Rer/Re)2 and starts to
appear as (Rer/Re)2 increases and is shown clearly in Figure 3a for various
values of the spin parameter (Rer/Re)2. It can also be noticed that the meridional
velocity at the sphere surface is not equal to zero as in the case of flow about a
solid sphere because of the rotation of the sphere’s surface due to the shear
stress exerted by the external flow. Figure 3b shows other meridional velocity
distribution but with viscosity ratio m* ¼ 1:05; higher surface velocities can be
noticed for this low viscosity ratio.

Figure 4 depicts the azimuthal velocity profiles around the sphere where the
velocity V has a certain value equation (4) at the surface of the sphere and this
value reduces to zero in the undisturbed flow region far away from the surface,
outside the azimuthal velocity boundary layer. The thickness of this boundary
layer increases as the meridional angle u increases due to the tangential
momentum diffusion within such an azimuthal velocity boundary layer.
Increasing the spin parameter increases the azimuthal surface velocity and
consequently leads to thinner boundary layers as shown in Figure 5.

The effect of the spin parameter on the radial velocity profiles is shown in
Figure 6a at different meridional angles for Re ¼ 100; a viscosity ratio m* ¼
1:5 and two values of (Rer/Re)2. The profiles are negative for meridional angles
,90 while they are positive for meridional angles $ 90. This behavior shows
that the radial velocity component transports the boundary-layer fluid towards
the sphere surface (negative values of W ) in the accelerated region of the flow
ðu , 90Þ compared with the radial velocity profiles in the adverse region
ðu . 908Þ; where the tendency changes to delivery of the fluid away from the
sphere. The effect of Reynolds number on the radial velocity profiles for two
selected meridional angles is shown in Figure 6b. Increasing the Reynolds
number always has the effect of decreasing the boundary-layer thickness in the
accelerating region and hence decreases the values of W for a given Z, thus
delaying the point of flow separation.

Figure 7a shows the distribution of the dimensionless meridional wall shear
stress at the surface of the sphere (Tx) for three selected values of the Reynolds
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Figure 2.
(a) Meridional velocity
profiles at different
angles for a non-spinning
liquid sphere,
(b) meridional velocity
profiles at different
angles for a spinning
liquid sphere
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Figure 3.
(a) Effect of the spin

parameter on the
meridional velocity

profile at a given
meridional location,
m* ¼ 1:5; Re ¼ 100;

u ¼ 608; (b) effect of the
spin parameter on the

meridional velocity
profile at a given

meridional location,
m* ¼ 1:01; Re ¼ 100;

u ¼ 458
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Figure 4.
Azimuthal velocity
profile for different
angles

Figure 5.
Effect of the spin
parameter on the
azimuthal velocity
profile
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Figure 6.
(a) Radial velocity

profiles at different
angles for two values of

the spin parameter, (b)
radial velocity profiles at

two different angles for
three values of Reynolds

number
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Figure 7.
(a) Effect of Re on the
meridional shear stress;
(b) effect of viscosity
ratio on the meridional
shear stress; (c) effect of
the spin parameter on the
meridional shear stress;
and (d) effect of the spin
parameter on the
azimuthal shear stress

(Continued )
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Figure 7.
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Figure 8.
Effect of the spin
parameter on the angle of
separation
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number (Re ¼ 75; 100 and 125), for given values of the viscosity ratio ðm* ¼
1:5Þ and the spin parameter ððRer=ReÞ2 ¼ 500Þ: The meridional shear stress
generally increases with the meridional angle, reaches a maximum value at a
meridional angle of about 608 and then it decreases until the point of external
flow separation is reached. Increasing the Reynolds number results in an
increase in the surface velocity and hence reduces the meridional shear stress.
The effect of the viscosity ratio on the shear stress is shown in Figure 7b where
decreasing the viscosity ratio would have a similar effect as increasing the
Reynolds number, i.e. the shear stress decreases due to the increased surface
velocity. Figure 7c shows the effect of the spin parameter (Rer/Re)2 on the
meridional shear stress. The increase in the values of the meridional shear
stress with (Rer/Re)2 is due to the fluid acceleration within the boundary layer
at higher values of the spin parameter. Figure 7d shows the effect of the
spin parameter (Rer/Re)2 on the dimensionless azimuthal shear stress (Ty).
Increasing the spin parameter leads to increasing the velocity gradient within
the hydrodynamic boundary layer and hence to higher values of the azimuthal
shear stress.

The effect of (Rer/Re)2 on the angle of flow separation is shown in Figure 8
where increasing the spin parameter results in retarded angles of external flow
separation. This can be explained with the aid of Figure 2b which indicates
thinner boundary layers corresponding to higher values of the spin parameter.
On the other hand, Figure 8 shows that the angle of external flow separation
decreases with m*. This is because the higher the values of m* the less viscous
the external fluid and hence the smaller the velocities within the external
boundary layer for a given Re.

Conclusions
In this study, the three velocity components around a liquid sphere moving
steadily in a gas stream fluid and spinning with a constant angular velocity
have been presented. The main parameters affecting the flow field are the
external flow Reynolds number, the interior-to-exterior viscosity ratio and the
spin parameter (Rer/Re)2. Increasing the Reynolds number or decreasing
the viscosity ratio has an effect of increasing the meridional velocity within
the boundary layer and delaying the point of external flow separation. On the
other hand, increasing the spin parameter (Rer/Re)2 results in accelerated flow
within the boundary layer and hence thinner boundary layers and retarded
separation points.
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